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ɼʘʥʥʦʝ ʤʝʪʦʜʠʯʝʩʢʦʝ ʧʦʩʦʙʠʝ ʧʨʝʜʩʪʘʚʣʷʝʪ ʩʦʙʦʡ 2-  ʁ ʯʘʩʪʴ ʩʙʦʨʥʠʢʘ 

ʦʨʠʛʠʥʘʣʴʥʳʭ ʪʝʢʩʪʦʚ ʜʣʷ ʬʦʨʤʠʨʦʚʘʥʠʷ ʥʘʚʳʢʦʚ ʧʨʦʩʤʦʪʨʦʚʦʛʦ, 

ʦʟʥʘʢʦʤʠʪʝʣʴʥʦʛʦ ʠ ʧʦʠʩʢʦʚʦʛʦ ʯʪʝʥʠʷ ʥʘ ʘʥʛʣʠʡʩʢʦʤ ʷʟʳʢʝ ʠ ʚʢʣʶʯʘʝʪ ʚ ʩʝʙʷ 

ʵʣʝʤʝʥʪʳ ʦʙʫʯʝʥʠʷ ʨʝʧʨʦʜʫʢʪʠʚʥʦ-ʧʨʦʜʫʢʪʠʚʥʦʤʫ ʠ ʧʨʦʜʫʢʪʠʚʥʦʤʫ ʚʠʜʘʤ 

ʨʝʯʝʚʦʡ ʜʝʷʪʝʣʴʥʦʩʪʠ. ʇʦʩʦʙʠʝ ʧʨʝʜʥʘʟʥʘʯʝʥʦ ʜʣʷ ʩʪʫʜʝʥʪʦʚ-ʙʘʢʘʣʘʚʨʦʚ ʠ 

ʤʘʛʠʩʪʨʘʥʪʦʚ I ʠ II ʢʫʨʩʦʚ ʬʘʢʫʣʴʪʝʪʘ ʦʧʪʠʢʦ-ʠʥʬʦʨʤʘʮʠʦʥʥʳʭ ʩʠʩʪʝʤ ʠ 

ʪʝʭʥʦʣʦʛʠʡ ʄʀʀɻɸʠʂ. 

ʉʦʩʪʘʚʠʪʝʣʠ: ɿʥʦʙʠʱʝʚʘ ʃ.ʅ., ʏʝʪʠʥ ɺ.ɸ.  
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ɼʘʥʥʦʝ ʤʝʪʦʜʠʯʝʩʢʦʝ ʧʦʩʦʙʠʝ ʷʚʣʷʝʪʩʷ ʧʨʦʜʦʣʞʝʥʠʝʤ ñʄʝʪʦʜʠʯʝʩʢʠʭ ʫʢʘʟʘʥʠʡ ʜʣʷ 

ʩʪʫʜʝʥʪʦʚ 1-2 ʢʫʨʩʦʚ ʬʘʢʫʣʴʪʝʪʘ ʦʧʪʠʢʦ-ʠʥʬʦʨʤʘʮʠʦʥʥʳʭ ʩʠʩʪʝʤ ʠ ʪʝʭʥʦʣʦʛʠʡò ʯ.1. 

ʎʝʣʴʶ ʜʘʥʥʦʛʦ ʧʦʩʦʙʠʷ ʷʚʣʷʝʪʩʷ ʜʘʣʴʥʝʡʰʝʝ ʨʘʟʚʠʪʠʝ ʥʘʚʳʢʦʚ ʯʪʝʥʠʷ ʦʨʠʛʠʥʘʣʴʥʦʡ 

ʣʠʪʝʨʘʪʫʨʳ ʧʦ ʩʧʝʮʠʘʣʴʥʦʩʪʠ, ʠʟʚʣʝʯʝʥʠʷ ʠʥʬʦʨʤʘʮʠʠ ʠʟ ʠʥʦʷʟʳʯʥʦʛʦ ʠʩʪʦʯʥʠʢʘ ʠ 

ʠʩʧʦʣʴʟʦʚʘʥʠʷ ʝʝ ʚ ʨʝʯʠ. 

ʇʨʠ ʧʦʜʛʦʪʦʚʢʝ ʢ ʟʘʥʷʪʠʷʤ ʧʨʝʧʦʜʘʚʘʪʝʣʴ ʤʦʞʝʪ ʦʙʨʘʱʘʪʴʩʷ ʢ ʫʧʨʘʞʥʝʥʠʷʤ ʧʦ 

ʧʨʦʩʤʦʪʨʦʚʦʤʫ, ʦʟʥʘʢʦʤʠʪʝʣʴʥʦʤʫ ʠ ʧʦʠʩʢʦʚʦʤʫ ʯʪʝʥʠʶ, ʧʨʝʜʣʦʞʝʥʥʳʤ ʚ 1-ʦʡ ʯʘʩʪʠ 

ʧʦʩʦʙʠʷ, ʘ ʪʘʢʞʝ ʠʩʧʦʣʴʟʦʚʘʪʴ ʟʘʜʘʥʠʷ, ʟʘʜʘʯʠ ʠ ʫʧʨʘʞʥʝʥʠʷ, ʧʨʝʜʩʪʘʚʣʝʥʥʳʝ ʚ ʜʘʥʥʦʤ 

ʧʦʩʦʙʠʠ ʩ ʮʝʣʴʶ ʬʦʨʤʠʨʦʚʘʥʠʷ ʫ ʩʪʫʜʝʥʪʦʚ ʥʘʚʳʢʦʚ ʨʝʧʨʦʜʫʢʪʠʚʥʦʡ ʠ ʧʨʦʜʫʢʪʠʚʥʦʡ 

ʨʝʯʝʚʦʡ ʜʝʷʪʝʣʴʥʦʩʪʠ. 

ʇʦʩʦʙʠʝ ʩʦʩʪʦʠʪ ʠʟ 6 ʦʨʠʛʠʥʘʣʴʥʳʭ ʪʝʢʩʪʦʚ ʧʦ ʦʧʪʠʢʝ ʥʘ ʘʥʛʣʠʡʩʢʦʤ ʷʟʳʢʝ. 

ʇʨʝʜʣʦʞʝʥʥʳʝ ʧʨʝʜʪʝʢʩʪʦʚʳʝ ʟʘʜʘʥʠʷ ʥʘʧʨʘʚʣʝʥʳ ʥʘ ʧʦʠʩʢ ʩʪʫʜʝʥʪʦʤ ʪʨʝʙʫʝʤʦʡ 

ʠʥʬʦʨʤʘʮʠʠ ʠ ʠʩʧʦʣʴʟʦʚʘʥʠʝ ʝʝ ʚ ʨʝʧʨʦʜʫʢʪʠʚʥʦ-ʧʨʦʜʫʢʪʠʚʥʦʡ ʨʝʯʠ ʚ ʚʠʜʝ ʦʙʦʩʥʦʚʘʥʠʷ 

ʩʚʦʝʛʦ ʦʪʚʝʪʘ ʧʨʠʤʝʨʘʤʠ ʠʟ ʪʝʢʩʪʘ.  

ʇʦʩʣʝ ʢʘʞʜʦʛʦ ʪʝʢʩʪʘ ʠʜʝʪ ʨʘʟʜʝʣ ñSummaryò, ʢʦʪʦʨʳʡ ʧʨʝʜʩʪʘʚʣʷʝʪ ʩʦʙʦʡ ʢʨʘʪʢʦʝ 

ʠʟʣʦʞʝʥʠʝ, ʢʦʥʩʧʝʢʪ ʧʨʦʯʠʪʘʥʥʦʛʦ ʪʝʢʩʪʘ. 

ʈʘʟʜʝʣ ñNotationò ʜʘʝʪ ʩʠʩʪʝʤʫ ʦʙʦʟʥʘʯʝʥʠʡ, ʠʩʧʦʣʴʟʦʚʘʥʥʳʭ ʚ ʧʦʩʦʙʠʠ. 

ʂʘʞʜʳʡ ʪʝʢʩʪ ʟʘʢʘʥʯʠʚʘʝʪʩʷ ʨʘʟʜʝʣʦʤ ñProblemsò, ʚ ʢʦʪʦʨʦʤ ʩʪʫʜʝʥʪʘʤ ʧʨʝʜʣʘʛʘʝʪʩʷ ʨʝʰʠʪʴ 

ʫʚʣʝʢʘʪʝʣʴʥʳʝ ʟʘʜʘʯʠ, ʦʪʥʦʩʷʱʠʝʩʷ ʢ ʩʦʜʝʨʞʘʥʠʶ ʠʟʫʯʝʥʥʦʛʦ ʪʝʢʩʪʘ; ʟʘʜʘʯʠ ʤʦʛʫʪ 

ʠʩʧʦʣʴʟʦʚʘʪʴʩʷ ʜʣʷ ʬʦʨʤʠʨʦʚʘʥʠʷ ʧʨʦʜʫʢʪʠʚʥʦʡ ʨʝʯʠ ʚ ʚʠʜʝ ʦʙʦʩʥʦʚʘʥʠʷ ʩʚʦʠʭ ʦʪʚʝʪʦʚ. 

ɺ ʨʘʟʜʝʣʝ ñSelf-checkò ʧʨʝʜʣʘʛʘʶʪʩʷ ʚʦʧʨʦʩʳ, ʦʪʚʝʪʳ ʥʘ ʢʦʪʦʨʳʝ ʧʦʟʚʦʣʷʶʪ ʩʪʫʜʝʥʪʘʤ 

ʫʛʣʫʙʠʪʴ ʟʥʘʥʠʷ. 

ʈʘʟʜʝʣ ñDiscussion Questionsò ʧʨʝʜʧʦʣʘʛʘʝʪ ʧʦʜʛʦʪʦʚʢʫ ʩʪʫʜʝʥʪʦʚ ʢ ʫʩʪʥʳʤ ʜʦʢʣʘʜʘʤ, ʘ ʚ 

ʜʘʣʴʥʝʡʰʝʤ ʢ ʧʨʝʟʝʥʪʘʮʠʷʤ ʪʝʢʩʪʦʚ ʧʦ ʩʧʝʮʠʘʣʴʥʦʩʪʠ ʥʘ ʘʥʛʣʠʡʩʢʦʤ ʷʟʳʢʝ. 

ʇʦʩʦʙʠʝ ʩʥʘʙʞʝʥʦ ʙʦʣʴʰʠʤ ʢʦʣʠʯʝʩʪʚʦʤ ʨʠʩʫʥʢʦʚ ʢ ʪʝʢʩʪʘʤ, ʯʪʦ ʧʦʤʦʛʘʝʪ ʩʪʫʜʝʥʪʘʤ ʣʫʯʰʝ 

ʧʦʥʠʤʘʪʴ ʦʨʠʛʠʥʘʣʴʥʳʝ ʥʝʘʜʘʧʪʠʨʦʚʘʥʥʳʝ ʪʝʢʩʪʳ, ʩʚʷʟʳʚʘʪʴ ʪʝʢʩʪʳ ʩ ʠʤʝʶʱʠʤʩʷ ʦʧʳʪʦʤ ʠ 

ʧʨʠʦʙʨʝʪʘʪʴ ʥʦʚʳʡ , ʘ ʪʘʢʞʝ ʠʥʪʝʨʧʨʝʪʠʨʦʚʘʪʴ ʪʝʢʩʪʳ ʧʦ ʨʠʩʫʥʢʘʤ.  
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˟̆̋̒̓ 1 

ɿʘʜʘʥʠʝ 

ʅʘʡʜʠʪʝ ʚ ʊʝʢʩʪʝ 1 ʦʪʚʝʪʳ ʥʘ ʩʣʝʜʫʶʱʠʝ ʚʦʧʨʦʩʳ: 

1. Why does aberration occur in curved mirrors and lenses? 

2. What are the ways to avoid aberration in a mirror or lens? 

3. Why is a spherical mirror a poor choice for a telescope used in astronomy? 

4. What is the relationship between the locations of an object and its image formed by a lens or mirror? 

Aberrations 

An imperfection or distortion in an image is called an aberration. An aberration can be produced by a 

flaw in a lens or mirror, but even with a perfect optical surface some degree of aberration is 

unavoidable. To see why, consider the mathematical approximation weôve been making, which is 

that the depth of the mirrorôs curve is small compared to do and di. Since only a flat mirror can satisfy 

this shallow-mirror condition perfectly, any curved mirror will deviate somewhat from the 

mathematical behavior we derived by assuming that condition. There are two main types of 

aberration in curved mirrors, and these also occur with lenses. 

 An object on the axis of the lens or mirror may be imaged correctly, but off-axis objects may be out 

of focus or distorted. In a camera, this type of aberration would show up as fuzziness or warping near 

the sides of the picture when the center was perfectly focused. An example of this is shown in figure 

a), and in that particular example, the aberration is not a sign that the equipment was of low quality 

or wasnôt right for the job but rather an inevitable result of trying to flatten a panoramic view; in the 

limit of a 360-degree panorama, the problem would be similar to the problem of representing the 

Earthôs surface on a flat map, which canôt be accomplished without distortion. 

The image may be sharp when the object is at certain distances and blurry when it is at other 

distances. The blurriness occurs because the rays do not all cross at exactly the same point. If we 

know in advance the distance of the objects with which the mirror or lens will be used, then we can 

optimize the shape of the optical surface to make in-focus images in that situation. For instance, a 

spherical mirror will produce a perfect image of an object that is at the center of the sphere, because 

each ray is reflected directly onto the radius along which it was emitted. For objects at greater 

distances, however, the focus will be somewhat blurry. In astronomy the objects being used are 

always at infinity, so a spherical mirror is a poor choice for a telescope. A different shape (a 

parabola) is better specialized for astronomy. 

Ɠ 
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One way of decreasing aberration is to use a small-diameter mirror or lens, or block most of the light 

with an opaque screen with a hole in it, so that only light that comes in close to the axis can get 

through. Either way, we are using a smaller portion of the lens or mirror whose curvature will be 

shallower, thereby making the shallow-mirror (or thin-lens) approximation more accurate. Your eye 

does this by narrowing down the pupil to a smaller hole. In a camera, there is either an automatic or 

a) This photo was taken using a "fish-eye 

lens," which gives an extremely large field 

of view. 

b) Spherical mirrors are the cheapest to 
make, but parabolic mirrors are better for 
making images of objects at infinity. A 
sphere has equal curvature everywhere, 
but a parabola has tighter curvature at its 
center and gentler curvature at the sides. 

c) Even though the spherical mirror (solid 
line) is not well adapted for viewing an 
object at infinity, we can improve its 
performance greatly by stopping it down. 
Now the only part of the mirror being used 
is the central portion, where its shape is 
virtually indistinguishable from a parabola 
(dashed line). 
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manual adjustment, and narrowing the opening is called ñstopping down.ò The disadvantage of 

stopping down is that light is wasted, so the image will be dimmer or a longer exposure must be used. 

What I would suggest you take away from this discussion for the sake of your general scientific 

education is simply an understanding of what an aberration is, why it occurs, and how it can be 

reduced, not detailed facts about specific types of aberrations. 

 

Selected Vocabulary  

focal length ........ a property of a lens or mirror, equal to the distance from the lens or mirror to the 

image it forms of an object that is infinitely far away 

Notation  

f  ........................ the focal length 

do  ...................... the distance of the object from the mirror 

di  ....................... the distance of the image from the mirror 

ḍf   ...................... the focal angle, defined as 1/f 

ḍO ...................... the object angle, defined as 1/do 

ḍi  ...................... the image angle, defined as 1/di 

Other Terminology and Notation  

f > 0 ................... describes a converging lens or mirror; in this book, all focal lengths are positive, so 

there is no such implication 

d) The Hubble Space 
Telescope was placed into orbit 
with faulty optics in 1990. Its 
main mirror was supposed to 
have been nearly parabolic, 
since it is an astronomical 
telescope, meant for producing 
images of objects at infinity. 
However, contractor Perkin 
Elmer had delivered a faulty 
mirror, which produced 
aberrations. The large photo 
shows astronauts putting 
correcting mirrors in place in 
1993. The two small photos 
show images produced by the 
telescope before and after the 
fix. 

3313ƙ 
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f < 0 ................... describes a diverging lens or mirror; in this book, all focal lengths are positive 

M < 0 ................. indicates an inverted image; in this book, all magnifications are positive 

Summary  

Every lens or mirror has a property called the focal length, which is defined as the distance from the 

lens or mirror to the image it forms of an object that is infinitely far away. A stronger lens or mirror 

has a shorter focal length. 

The relationship between the locations of an object and its image formed by a lens or mirror can 

always be expressed by equations of the form 

f᷊ = Ñ᷊ i Ñ ᷊o 

 = Ñ
ϛ
 Ñ  

The choice of plus and minus signs depends on whether we are dealing with a lens or a mirror, 

whether the lens or mirror is converging or diverging, and whether the image is real or virtual. A 

method for determining the plus and minus signs is as follows: 

1.  Use ray diagrams to decide whether i᷊ and ᷊ o vary in the same way or in opposite ways. 

Based on this, decide whether the two signs in the equation are the same or opposite. If the signs are 

opposite, go on to step 2 to determine which is positive and which is negative. 

2.  If the signs are opposite, we need to decide which is the positive one and which is the 

negative. Since the focal angle is never negative, the smaller angle must be the one with a minus sign. 

Once the correct form of the equation has been determined, the magnification can be found via the 

equation 

M = di 

do 

This equation expresses the idea that the entire image-world is shrunk consistently in all three 

dimensions. 

Problems  

1 Apply the equation M = di/do  to the case of a flat mirror. 

2 Use the method described in the text to derive the equation relating object distance to image 

distance for the case of a virtual image produced by a converging mirror. 

3 (a) Make up a numerical example of a virtual image formed by a converging mirror with a 

Ɠ 

1356ƙ 
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certain focal length, and determine the magnification. (You will need the result of problem 2.) Make 

sure to choose values of do and f that would actually produce a virtual image, not a real one. Now 

change the location of the object a little bit and re-determine the magnification, showing that it 

changes. At my local department store, the cosmetics department sells mirrors advertised as giving a 

magnification of 5 times. How would you interpret this? 

(b) Suppose a Newtonian telescope is being used for astronomical observing. Assume for simplicity 

that no eyepiece is used, and assume a value for the focal length of the mirror that would be 

reasonable for an amateur instrument that is to fit in a closet. Is the angular magnification different 

for objects at different distances? For example, you could consider two planets, one of which is twice 

as far as the other. 

4  (a) Find a case where the magnification of a curved mirror is 

infinite. Is the angular magnification infinite from any realistic 

viewing position? (b) Explain why an arbitrarily large magnification 

canôt be achieved by having a sufficiently small value of do. 

5  The figure shows a device for constructing a realistic optical 

illusion. Two mirrors of equal focal length are put against each other 

with their silvered surfaces facing inward. A small object placed in 

the bottom of the cavity will have its image projected in the air 

above. The way it works is that the top mirror produces a virtual 

image, and the bottom mirror then creates a real image of the virtual 

image. (a) Show that if the image is to be positioned as shown, at the 

mouth of the cavity, then the focal length of the mirrors is related to 

the dimension h via the equation 

Restate the equation in terms of a single variable x = h/f, and show 

that there are two solutions for x. Which solution is physically 

consistent with the assumptions of the calculation? 

6 A concave surface that reflects sound waves can act just like 

a converging mirror. Suppose that, standing near such a surface, you 

are able to find a point where you can place your head so that your 

own whispers are focused back on your head, so that they sound loud to you. Given your distance to 

the surface, what is the surface's focal length? 

7  Find the focal length of the mirror in problem 5 of chapter 1. 

Problem 5. 

Problem 8. 
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8  Rank the focal lengths of the mirrors, from shortest to longest. 

9 (a) A converging mirror is being used to create a virtual image. What is the range of 

possible magnifications? (b) Do the same for the other types of images that can be formed by curved 

mirrors (both converging and diverging). 

10 (a) A converging mirror with a focal length of 20 cm is used to create an image, using an 

object at a distance of 10 cm. Is the image real, or is it virtual? (b) How about f = 20 cm and do = 30 

cm? (c) What if it was a diverging mirror with f = 20 cm and do = 10 cm? (d) A diverging mirror with 

= 20 cm and do = 30 cm? 

˟̆̋̒̓ 2 

ɿʘʜʘʥʠʝ 

ʅʘʡʜʠʪʝ ʚ ʊʝʢʩʪʝ 1 ʦʪʚʝʪʳ ʥʘ ʩʣʝʜʫʶʱʠʝ ʚʦʧʨʦʩʳ: 

1. What is the design flaw of the vertebrate eye? 

2. What does the eye have in common with optical devices based on refraction? 

3. How can we measure the density of an unknown sample of gas by optical means? 

4. What is the index of refraction? 

5. Does refraction depend on the color of light? 

 

Three stages in the evolution of the eye. The flatworm has two eye pits. The nautilus's eyes are pinhole 

cameras. The human eye incorporates a lens. 
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Refraction 

The structure of an eye is fundamentally dictated by physics, and it has 

arisen separately by evolution somewhere between eight and 40 times, 

depending on which biologist you ask. 

We humans have a version of the eye that can be traced back to the 

evolution of a light-sensitive ñeye spotò on the head of an ancient 

invertebrate. A sunken pit then developed so that the eye would only 

receive light from one direction, allowing the organism to tell where 

the light was coming from. (Modern flatworms have this type of eye.) 

The top of the pit then became partially covered, leaving a hole, for 

even greater directionality (as in the nautilus). At some point the cavity 

became filled with jelly, and this jelly finally became a lens, resulting 

in the general type of eye that we share with the bony fishes and other 

vertebrates. Far from being a perfect device, the vertebrate eye is 

marred by a serious design flaw due to the lack of planning or 

intelligent design in evolution: the nerve cells of the retina and the 

blood vessels that serve them are all in front of the light-sensitive cells, 

blocking part of the light. Squids and other mollusks, whose eyes 

evolved on a separate branch of the evolutionary tree, have a more 

sensible arrangement, with the light-sensitive cells out in front. 

Refraction 

The fundamental physical phenomenon at work in the eye is that when 

light crosses a boundary between two media (such as air and the eyeôs 

jelly), part of its energy is reflected, but part passes into the new 

medium. In the ray model of light, we describe the original ray as 

splitting into a reflected ray and a transmitted one (the one that gets 

through the boundary). Of course the reflected ray goes in a direction 

that is different from that of the original one, according to the rules of 

reflection we have already studied. More surprisingly ð and this is the 

b) The anatomy of the eye. 

a) A human eye. 

c) A simplified optical 
diagram of the eye. Light rays 
are bent when they cross 
from the air into the eye. (A 
little of the incident rays' 
energy goes into the reflected 
rays rather than the ones 
transmitted into the eye.) 
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crucial point for making your eye focus light ð the transmitted ray 

is bent somewhat as well. This bending phenomenon is called 

refraction. The origin of the word is the same as that of the word 

ñfracture,ò i.e., the ray is bent or ñbroken.ò (Keep in mind, however, 

that light rays are not physical objects that can really be ñbroken.ò) 

Refraction occurs with all waves, not just light waves. 

The actual anatomy of the eye, b), is quite complex, but in essence it 

is very much like every other optical device based on refraction. The 

rays are bent when they pass through the front surface of the eye, c). 

Rays that enter farther from the central axis are bent more, with the 

result that an image is formed on the retina. There is only one 

slightly novel aspect of the situation. In most human-built optical 

devices, such as a movie projector, the light is bent as it passes into a 

lens, bent again as it reemerges, and then reaches a focus beyond the 

lens. In the eye, however, the ñscreenò is inside the eye, so the rays 

are only refracted once, on entering the jelly, and never emerge 

again.  

A common misconception is that the ñlensò of the eye is what does 

the focusing. All the transparent parts of the eye are made of fairly 

similar stuff, so the dramatic change in medium is when a ray crosses 

from the air into the eye (at the outside surface of the cornea). This is 

where nearly all the refraction takes place. The lens medium differs 

only slightly in its optical properties from the rest of the eye, so very 

little refraction occurs as light enters and exits the lens. The lens, 

whose shape is adjusted by muscles attached to it, is only meant for 

fine-tuning the focus to form images of near or far objects. 

Refractive properties of media  

What are the rules governing refraction? The first thing to observe is 

that just as with reflection, the new, bent part of the ray lies in the 

same plane as the normal (perpendicular) and the incident ray, d). 

If you try shooting a beam of light at the boundary between two substances, say water and air, youôll 

find that regardless of the angle at which you send in the beam, the part of the beam in the water is 

d) The incident, reflected, and 
transmitted (refracted) rays all 
lie in a plane that includes the 
normal (dashed line). 

e) The angles ḍ1 and ḍ2 are 
related to each other, and also 
depend on the properties of the 
two media. Because refraction 
is time-reversal symmetric, 
there is no need to label the 
rays with arrowheads 

f) Refraction has time-reversal 
symmetry. Regardless of 
whether the light is going into 
or out of the water, the 
relationship between the two 
angles is the same, and the ray 
is closer to the normal while in 
the water. 

2291ƙ 
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always closer to the normal line, e). It doesnôt matter if the ray is entering the water or leaving, so 

refraction is symmetric with respect to time-reversal, f). 

If, instead of water and air, you try another combination of substances, say plastic and gasoline, again 

youôll find that the rayôs angle with respect to the normal is consistently smaller in one and larger in 

the other. Also, we find that if substance A has rays closer to normal than in B, and B has rays closer 

to normal than in C, then A has rays closer to normal than C. This means that we can rank-order all 

materials according to their refractive properties. Isaac Newton did so, including in his list many 

peculiar substances. Several general rules can be inferred from such a list: 

¶ Vacuum lies at one end of the list. In refraction across the interface between vacuum and any 

other medium, the other medium has rays closer to the normal. 

¶ Among gases, the ray gets closer to the normal if you increase the density of the gas by 

pressurizing it more. 

¶ The refractive properties of liquid mixtures and solutions vary in a smooth and systematic 

manner as the proportions of the mixture are changed. 

¶ Denser substances usually, but not always, have rays closer to the normal. 

The second and third rules provide us with a method for measuring the density of an unknown 

sample of gas, or the concentration of a solution. The latter technique is very commonly used, and the 

CRC Handbook of Physics and Chemistry, for instance, contains extensive tables of the refractive 

properties of sugar solutions, cat urine, and so on. 

Snell's law  

The numerical rule governing refraction was discovered by Snell, who must have collected 

experimental data something like what is shown on this graph and then attempted by trial and error to 

find the right equation. The equation he came up with was 

ίὭὲ ϛ

ίὭὲ Ϝ
ὧέὲίὸὥὲὸ Ȣ 

The value of the constant would depend on the combination of media used. For instance, any one of 

the data points in the graph would have sufficed to show that the constant was 1.3 for an air-water 

interface (taking air to be substance 1 and water to be substance 2). 

Snell further found that if media A and B gave a constant KAB and media B and C gave a constant 

KBC, then refraction at an interface between A and C would be described by a constant equal to the 

product, KAC = KABKBC. 

2030ƙ 
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This is exactly what one would expect if the constant depended on 

the ratio of some number characterizing one medium to the 

number characteristic of the second medium. This number is 

called the index of refraction of the medium, written as n in 

equations. Since measuring the angles would only allow him to 

determine the ratio of the indices of refraction of two media, Snell 

had to pick some medium and define it as having n = 1. He chose 

to define vacuum as having n = 1. (The index of refraction of air at 

normal atmospheric pressure is 1.0003, so for most purposes it is a 

good approximation to assume that air has n = 1.) He also had to 

decide which way to define the ratio, and he chose to define it so that media with their rays closer to 

the normal would have larger indices of refraction. This had the advantage that denser media would 

typically have higher indices of refraction, and for this reason the index of refraction is also referred 

to as the optical density. Written in terms of indices of refraction, Snellôs equation becomes 

ίὭὲ ϛ

ίὭὲ Ϝ

ὲϛ

ὲϜ
 

but rewriting it in the form 

nϛsiṇ ϛ  nϜsin Ϝ̣ 

[relationship between angles of rays at the interface between media with 

indices of refraction n1 and n2; angles are defined with respect to the normal] 

makes us less likely to get the 1ôs and 2ôs mixed up, so this the way most people remember Snellôs 

law. 

self-check A 

(1)  What would the graph look like for two substances with the same index of refraction? 

(2)  Based on the graph, when does refraction at an air-water interface change the direction of a 

ray most strongly? 

Ʒ A submarine shines its searchlight up toward the surface of the water. What is the angle Ŭ shown 

in the figure? 

Ʒ The tricky part is that Snell's law refers to the angles with respect to the normal. Forgetting this is 

a very common mistake. The beam is at an angle of 30 Á with respect to the normal in the water. 

Finding an angle using Snell's law example 1 

g) The relationship between the 
angles in refraction. 

2128ƙ 
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Let's refer to the air as medium 1 and the water as 2. Solving Snell's 

law for ḍ1 , we find 

ɗ1 = sin-1( 
ϛ

Ϝ
 sinɗ2 ). 

As mentioned above, air has an index of refraction very close to 1, and 

water's is about 1.3, so we find ḍ1 = 40Á. The angle Ŭ is therefore 50Á. 

The index of refraction is related to the speed of light.  

What neither Snell nor Newton knew was that there is a very simple interpretation of the index of 

refraction. This may come as a relief to the reader who is taken aback by the complex reasoning 

involving proportionalities that led to its definition. Later experiments showed that the index of 

refraction of a medium was inversely proportional to the speed of light in that medium. Since c is 

defined as the speed of light in vacuum, and n = 1 is defined as the index of refraction of vacuum, we 

have 

n =  

[n = mediumôs index of refraction, v = speed of light in that medium, c = speed of light in a vacuum] 

Many textbooks start with this as the definition of the index of refraction, although that approach 

makes the quantityôs name somewhat of a mystery, and leaves students wondering why c/v was used 

rather than v/c. It should also be noted that measuring angles of refraction is a far more practical 

method for determining n than direct measurement of the speed of light in the substance of interest. 

A mechanical model of Snell's law  

 

 

Why should refraction be related to the speed of light? The 

mechanical model shown in the figure may help to make this more 

plausible. Suppose medium 2 is thick, sticky mud, which slows down 

the car. The car's right wheel hits the mud first, causing the right side 

of the car to slow down. This will cause the car to turn to the right 

until is moves far enough forward for the left wheel to cross into the 

mud. After that, the two sides of the car will once again be moving at 

the same speed, and the car will go straight. 

Of course, light isnôt a car. Why should a beam of light have anything 

h) Example 1. 

i) A mechanical model of 
refraction. 

Ɠ 
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resembling a ñleft wheelò and ñright wheel?ò After all, the mechanical model would predict that a 

motorcycle would go straight, and a motorcycle seems like a better approximation to a ray of light 

than a car.  The whole thing is just a model, not a description of physical reality 

A derivation of Snell's law  

However intuitively appealing the mechanical model may be, light is a wave, and we should be using 

wave models to describe refraction. In fact Snellôs law can be derived quite simply from wave 

concepts. Figure j shows the refraction of a water wave. The water in the upper left part of the tank is 

shallower, so the speed of the waves is slower there, and their wavelengths is shorter. The reflected 

part of the wave is also very faintly visible.  

In the close-up view on the right, the dashed lines are normals to the interface. The two marked 

angles on the right side are both equal to 1᷊, and the two on the left to ᷊2. 

Trigonometry gives 

sin ᷊ 1 = ɚ1 / h   and 

sin ᷊ 2 = ɚ 2/ h 

Eliminating h by dividing the equations, we find 

ÓÉÎϛ

ÓÉÎϜ
 
ʇϛ

ʇ Ϝ
 

j) A derivation of Snell's law. 
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The frequencies of the two waves must be equal or else they would get out of step, so by v = f ɚ we 

know that their wavelengths are proportional to their velocities. Combining ɚ Ŭ v with v Ŭ 1/n gives ɚ 

Ŭ 1/n, so we find 

ÓÉÎ ϛ

ÓÉÎ Ϝ
 
ÎϜ

Îϛ
 ȟ 

which is one form of Snellôs law. 

Ocean waves near and far from shore example 2 

Ocean waves are formed by winds, typically on the open sea, and the wavefronts are perpendicular 

to the direction of the wind that formed them. At the beach, however, you have undoubtedly 

observed that waves tend come in with their wavefronts very nearly (but not exactly) parallel to the 

shoreline. This is because the speed of water waves in shallow water depends on depth: the 

shallower the water, the slower the wave. Although the change from the fast-wave region to the 

slow- wave region is gradual rather than abrupt, there is still refraction, and the wave motion is 

nearly perpendicular to the normal in the slow region. 

Color and refraction  

In general, the speed of light in a medium depends both on the medium and on the wavelength of the 

light. Another way of saying it is that a mediumôs index of refraction varies with wavelength. This is 

why a prism can be used to split up a beam of white light into a rainbow. Each wavelength of light is 

refracted through a different angle. 

How much light is reflected, and how much is transmit ted? 

Earlier, we developed an equation for the percentage of the wave energy that is transmitted and the 

percentage reflected at a boundary between media. This was only done in the case of waves in one 

dimension, however, and rather than discuss the full three dimensional generalization it will be more 

useful to go into some qualitative observations about what happens. First, reflection happens only at 

the interface between two media, and two media with the same index of refraction act as if they were 

a single medium. Thus, at the interface between media with the same index of refraction, there is no 

reflection, and the ray keeps going straight. Continuing this line of thought, it is not surprising that 

we observe very little reflection at an interface between media with similar indices of refraction. 

The next thing to note is that it is possible to have situations where no possible angle for the refracted 

ray can satisfy Snellôs law. Solving Snellôs law for ⱥ2, we find  

1945ƙ 
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Ϝ̣  sin
-1
( 
ϛ

Ϝ
sin ɗ1 ) 

and if n1 is greater than n2, then there will be large values of 1᷊ for 

which the quantity (n1/n2)sin  ᷊ is greater than one, meaning that 

your calculator will flash an error message at you when you try to 

take the inverse sine. What can happen physically in such a 

situation? The answer is that all the light is reflected, so there is no 

refracted ray. This phenomenon is known as total internal 

reflection, and is used in the fiber-optic cables that nowadays carry 

almost all long-distance telephone calls. The electrical signals from 

your phone travel to a switching center, where they are converted 

from electricity into light. From there, the light is sent across the 

country in a thin transparent fiber. The light is aimed straight into 

the end of the fiber, and as long as the fiber never goes through any 

turns that are too sharp, the light will always encounter the edge of 

the fiber at an angle sufficiently oblique to give total internal 

reflection. If the fiber-optic cable is thick enough, one can see an 

image at one end of whatever the other end is pointed at. 

Alternatively, a bundle of cables can be used, since a single thick 

cable is too hard to bend. This technique for seeing around corners 

is useful for making surgery less traumatic. Instead of cutting a 

person wide open, a surgeon can make a small ñkeyholeò incision 

and insert a bundle of fiber-optic cable (known as an endoscope) 

into the body.  

Since rays at sufficiently large angles with respect to the normal may be completely reflected, it is 

not surprising that the relative amount of reflection changes depending on the angle of incidence, and 

is greatest for large angles of incidence. 

Discussion Questions  

A  What index of refraction should a fish have in order to be invisible to other fish? 

B  Does a surgeon usingan endoscope need a source of light inside the body cavity? If so, how 

could this be done without inserting a light bulb through the incision? 

C  A denser sample of agas has a higher index of refraction than a less dense sample (i.e., a sample 

k) Total internal reflection in a 
fiber-optic cable. 

l) A simplified drawing of a 
surgical endoscope. The first 
lens forms a real image at one 
end of a bundle of optical fibers. 
The light is transmitted through 
the bundle, and is finally 
magnified by the eyepiece. 

m) Endoscopic images of a 
duodenal ulcer. 
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under lower pressure), but why would it not make sense for the index of refraction of a gas to be 

proportional to density? 

D  The earth's atmosphere gets thinner and thinner as you go higher in altitude. If a ray of light 

comes from a star that is below the zenith, what will happen to it as it comes into the earth's 

atmosphere? 

E  Does total internal reflection occur when light in a denser medium encounters a less dense 

medium, or the other way around? Or can it occur in either case? 

˟̆̋̒̓ σ 

ɿʘʜʘʥʠʝ 

ʅʘʡʜʠʪʝ ʚ ʊʝʢʩʪʝ 1 ʦʪʚʝʪʳ ʥʘ ʩʣʝʜʫʶʱʠʝ ʚʦʧʨʦʩʳ: 

1. Does the bending of the ray serve to minimize the time required to get from a point A to point B? 

2. What is total internal reflection? 

3. What fact are advanced technologies such as fiber optics based on?  

4. What is refraction?   

 

Lenses 

Figures n)1 and n)2 show examples of lenses forming images. There is essentially nothing for you to 

learn about imaging with lenses that is truly new. You already know how to construct and use ray 

diagrams, and you know about real and virtual images. The concept of the focal length of a lens is the 

same as for a curved mirror. The equations for locating images and determining magnifications are of 

the same form. Itôs really just a question of flexing your mental muscles on a few examples. The 

n) 
1. A converging lens forms an 

image of a candle flame. 
2. A diverging lens. 
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following self-checks and discussion questions will get you started. 

self-check B 

(1)  In figures n)1 and n)2, classify the images as real or virtual. 

(2) Glass has an index of refraction that is greater than that of air. Consider the topmost ray in 

figure n)1. Explain why the ray makes a slight left turn upon entering the lens, and another 

left turn when it exits. 

(3) If the flame in figure n)2 was moved closer to the lens, what would happen to the location of 

the image.  

Discussion Questions  

A  In figures n)1 and n)2, the front and back surfaces are parallel to each other at the center of the 

lens. What will happen to a ray that enters near the center, but not necessarily along the axis of the 

lens? Draw a BIG ray diagram, and show a ray that comes from off axis. 

B  Suppose you wanted to change the setup in figure n)1 so that the location of the actual flame in 

the figure would instead be occupied by an image of a flame. Where would you have to move the 

candle to achieve this? What about in n)2? 

C  There are three qualitatively different types of image formation that can occur with lenses, of 

which figures n)1 and n)2 exhaust only two. Figure out what the third possibility is. Which of the 

three possibilities can result in a magnification greater than one? 

D  Classify the examples shown in figure o) according to the types of images delineated in the 

previous discussion question. 

E  In figures n)1 and n)2, the only rays drawn were those that happened to enter the lenses. 

Discuss this in relation to figure o). 

o) Two images of a rose created 
by the same lens and recorded 
with the same camera. 
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F  In the right-hand side of figure o), the image viewed through the lens is in focus, but the side of 

the rose that sticks out from behind the lens is not. Why? 

G  In general, the index of refraction depends on the color of the light. What effect would this have 

on images formed by lenses?  

The Lensmaker's Equation 

The focal length of a spherical mirror is simply r/2, but we cannot expect the focal length of a lens to 

be given by pure geometry, since it also depends on the index of refraction of the lens. Suppose we 

have a lens whose front and back surfaces are both spherical. (This is no great loss of generality, 

since any surface with a sufficiently shallow curvature can be approximated with a sphere.) Then if 

the lens is immersed in a medium with an index of refraction of 1, its focal length is given 

approximately by 

f = [(n - 1)| 
ϛ
 Ñ
Ϝ
 |]

-1
 

where n is the index of refraction and r1 and r2 are the radii of curvature of the two surfaces of the 

lens. This is known as the lensmakerôs equation. In my opinion it is not particularly worthy of 

memorization. The positive sign is used when both surfaces are curved outward or both are curved 

inward; otherwise a negative sign applies. The proof of this equation is left as an exercise to those 

readers who are sufficiently brave and motivated. 

The Principle of Least Time for Refraction 

We have seen previously how the rules governing straight-line motion of 

light and reflection of light can be derived from the principle of least 

time. What about refraction? In the figure, it is indeed plausible that the 

bending of the ray serves to minimize the time required to get from a 

point A to point B. 

If the ray followed the unbent path shown with a dashed line, it would 

have to travel a longer distance in the medium in which its speed is 

slower. By bending the correct amount, it can reduce the distance it has to 

cover in the slower medium without going too far out of its way. It is true 

that Snellôs law gives exactly the set of angles that minimizes the time 

required for light to get from one point to another. The proof of this fact 

 

p) The radii of curvature 
appearing in the 
lensmaker's equation. 

q) The principle of least 
time applied to refraction. 
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is left as an exercise. 

Summary  

Selected vocabulary   

Refraction ..................... the change in direction that occurs when a wave encounters the interface 

between two media 

index of refraction ......... an optical property of matter; the speed of light in a vacuum divided by the 

speed of light in the substance in question 

Notation  
n ................................... the index of refraction 

Refraction is a change in direction that occurs when a wave encounters the interface between two 

media. Together, refraction and reflection account for the basic principles behind nearly all optical 

devices. 

Snell discovered the equation for refraction, 

nϛsin ɗϛ = nϜsin ɗϜ 

[angles measured with respect to the normal] 

through experiments with light rays, long before light was proven to be a wave. Snellôs law can be 

proven based on the geometrical behavior of waves. Here n is the index of refraction. Snell invented 

this quantity to describe the refractive properties of various substances, but it was later found to be 

related to the speed of light in the substance, 

n =  

where c is the speed of light in a vacuum. In general a materialôs index of refraction is different for 

different wavelengths of light. 

Any wave is partially transmitted and partially reflected at the boundary between two media in which 

its speeds are different. It is not particularly important to know the equation that tells what fraction is 

transmitted (and thus refracted), but important technologies such as fiber optics are based on the fact 

that this fraction becomes zero for sufficiently oblique angles. This phenomenon is referred to as total 

internal reflection. It occurs when there is no angle that satisfies Snellôs law. 

Problems  

1 Suppose a converging lens is constructed of a type of plastic whose index of refraction is less 

1828ƙ 

Ɠ 

1306ƙ 



21 

 

than that of water. How will the lensôs behavior be different if it is placed underwater? 

2 There are two main types of telescopes, refracting (using lenses) and reflecting (using 

mirrors). (Some telescopes use a mixture of the two types of elements: the light first encounters a 

large curved mirror, and then goes through an eyepiece that is a lens.) What implications would the 

color-dependence of focal length have for the relative merits of the two types of telescopes? What 

would happen with white starlight, for example? 

3 Based on Snellôs law, explain why rays of light passing through the edges of a converging 

lens are bent more than rays passing through parts closer to the center. It might seem like it should be 

the other way around, since the rays at the edge pass through less glass ð shouldnôt they be affected 

less? In your answer: 

Å Include a ray diagram showing a huge close-up view of the relevant part of the lens. 

Å Make use of the fact that the front and back surfaces arenôt always parallel; a lens in which 

the front and back surfaces are always parallel doesnôt focus light at all, so if your explanation 

doesnôt make use of this fact, your argument must be incorrect. 

Å  Make sure your argument still works even if the rays donôt come in parallel to the axis. 

4 When you take pictures with a camera, the distance between the lens and the film has to be 

adjusted, depending on the distance at which you want to focus. This is done by moving the lens. If 

you want to change your focus so that you can take a picture of something farther away, which way 

do you have to move the lens? Explain using ray diagrams. [Based on a problem by Eric Mazur.] 

5 (a) Light is being reflected diffusely from an object 1.000 m under water. The light that comes 

up to the surface is refracted at water-air interface. If the refracted rays all appear to come from the 

same point, then there will be a virtual image of the object in the water, above the objectôs actual 

position, which will be visible to an observer above the water. Consider three rays, A, B and C, 

whose angles in the water with respect to the normal are i᷊ = 0.000Á, 1.000Á and 20.000Á 

respectively. Find the depth of the point at which the refracted parts of A and B appear to have 

intersected, and do the same for A and C. Show that the intersections are at nearly the same depth, 

but not quite. [Check: The difference in depth should be about 4 cm.] 

(b) Since all the refracted rays do not quite appear to have come from the same point, this is 

technically not a virtual image. In practical terms, what effect would this have on what you see? 

(c) In the case where the angles are all small, use algebra and trig to show that the refracted rays do 

appear to come from the same point, and find an equation for the depth of the virtual image. Do not 

put in any numerical values for the angles or for the indices of refraction ð just keep them as 
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symbols. You will need the approximation sin  ᷊å tan  ᷊å ᷊, which is valid for small angles 

measured in radians. 

6 The drawing shows the anatomy of the human eye, at twice life 

size. Find the radius of curvature of the outer surface of the cornea by 

measurements on the figure, and then derive the focal length of the air-

cornea interface, where almost all the focusing of light occurs. You will 

need to use physical reasoning to modify the lensmakerôs equation for 

the case where there is only a single refracting surface. Assume that the 

index of refraction of the cornea is essentially that of water. 

7 When swimming underwater, why is your vision made much 

clearer by wearing goggles with flat pieces of glass that trap air behind 

them? [Hint: You can simplify your reasoning by considering the special case where you are looking 

at an object far away, and along the optic axis of the eye.] 
 

8 The figure shows four lenses. Lens 1 has two spherical surfaces. 

Lens 2 is the same as lens 1 but turned around. Lens 3 is made by 

cutting through lens 1 and turning the bottom around. Lens 4 is made 

by cutting a central circle out of lens 1 and recessing it. 

(a) A parallel beam of light enters lens 1 from the left, parallel to its 

axis. Reasoning based on Snellôs law, will the beam emerging from the 

lens be bent inward or outward, or will it remain parallel to the axis? 

Explain your reasoning. As part of your answer, make an huge drawing of one small part of the lens, 

and apply Snellôs law at both interfaces. Recall that rays are bent more if they come to the interface at 

a larger angle with respect to the normal. 

(b) What will happen with lenses 2, 3, and 4? Explain. Drawings are not necessary. 

9 Prove that the principle of least time leads to Snellôs law. 

10 An object is more than one focal length from a converging lens. (a) Draw a ray diagram. (b) 

Using reasoning like that developed in chapter 3, determine the positive and negative signs in the 

equation 1/f = Ñ1/di Ñ 1/do. (c) The images of the rose in section 4.2 were made using a lens with a 

focal length of 23 cm. If the lens is placed 80 cm from the rose, locate the image. 

11 An object is less than one focal length from a converging lens. (a) Draw a ray diagram. (b) 

Using reasoning like that developed in chapter 3, determine the positive and negative signs in the 

equation 1/f = Ñ1/di Ñ 1/do. (c) The images of the rose in section 4.2 were made using a lens with a 

Problem 6 

Problem 8 
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focal length of 23 cm. If the lens is placed 10 cm from the rose, locate the image. 

12 Nearsighted people wear glasses whose lenses are diverging. (a)Draw a ray diagram. For 

simplicity pretend that there is no eye behind the glasses. (b) Using reasoning like that developed in 

chapter 3, determine the positive and negative signs in the equation 1/f = Ñ1/d Ñ 1/do. (c) If the focal 

length of the lens is 50.0 cm, and the person is looking at an object at a distance of 80.0 cm, locate 

the image.  

13 Two standard focal lengths for camera lenses are 50 mm 

(standard) and 28 mm (wide-angle). To see how the focal lengths 

relate to the angular size of the field of view, it is helpful to visualize 

things as represented in the figure. Instead of showing many rays 

coming from the same point on the same object, as we normally do, 

the figure shows two rays from two different objects. Although the 

lens will intercept infinitely many rays from each of these points, we 

have shown only the ones that pass through the center of the lens, so 

that they suffer no angular deflection. (Any angular deflection at the 

front surface of the lens is canceled by an opposite deflection at the back, since the front and back 

surfaces are parallel at the lensôs center.) What is special about these two rays is that they are aimed 

at the edges of one 35-mm-wide frame of film; that is, they show the limits of the field of view. 

Throughout this problem, we assume that do is much greater than di. (a) Compute the angular width 

of the cameraôs field of view when these two lenses are used. (b) Use small-angle approximations to 

find a simplified equation for the angular width of the field of view, ᷊, in terms of the focal length, f, 

and the width of the film, w. Your equation should not have any trig functions in it. Compare the 

results of this approximation with your answers from part a. (c) Suppose that we are holding constant 

the aperture (amount of surface area of the lens being used to collect light). When switching from a 

50-mm lens to a 28-mm lens, how many times longer or shorter must the exposure be in order to 

make a properly developed picture, i.e., one that is not under- or overexposed? [Based on a problem 

by Arnold Arons.] 

14 A nearsighted person is one whose eyes focus light too strongly, and who is therefore unable 

to relax the lens inside her eye sufficiently to form an image on her retina of an object that is too far 

away. 

(a)  Draw a ray diagram showing what happens when the person tries, with uncorrected vision, to 

focus at infinity. 

Problem 13 
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(b)  What type of lenses do her glasses have? Explain. 

(c)  Draw a ray diagram showing what happens when she wears glasses. Locate both the image 

formed by the glasses and the final image. 

(d)  Suppose she sometimes uses contact lenses instead of her glasses. Does the focal length of 

her contacts have to be less than, equal to, or greater than that of her glasses? Explain. 

15  Diamond has an index of refraction of 2.42, and part of the reason diamonds sparkle is that 

this encourages a light ray to undergo many total internal reflections before it emerges. Calculate the 

critical angle at which total internal reflection occurs in diamond. Explain the interpretation of your 

result: Is it measured from the normal, or from the surface? Is it a minimum, or a maximum? How 

would the critical angle have been different for a substance such as glass or plastic, with a lower 

index of refraction? 

16 Fredôs eyes are able to focus on things as close as 5.0 cm. Fred holds a magnifying glass with 

a focal length of 3.0 cm at a height of 2.0 cm above a flatworm. (a) Locate the image, and find the 

magnification. (b) Without the magnifying glass, from what distance would Fred want to view the 

flatworm to see its details as well as possible? With the magnifying glass? (c) Compute the angular 

magnification.  

17 Panel 1 of the figure shows the optics inside a pair of binoculars. They are essentially a pair of 

telescopes, one for each eye. 

But to make them more compact, and allow the eyepieces to be the right distance apart for a human 

face, they incorporate a set of eight prisms, which fold the light path. In addition, the prisms make the 

image upright. Panel 2 shows one of these prisms, known as a Porro prism. The light enters along a 

normal, undergoes two total internal reflections at angles of 45 degrees with respect to the back 

surfaces, and exits along a normal. The image of the letter R has been flipped across the horizontal. 

Panel 3 shows a pair of these prisms glued together. The image will be flipped across both the 

Problem 17. 
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horizontal and the vertical, which makes it oriented the right way for the user of the binoculars. 

(a)  Find the minimum possible index of refraction for the glass used in the prisms. 

(b)  For a material of this minimal index of refraction, find the fraction of the incoming light that 

will be lost to reflection in the four Porro prisms on a each side of a pair of binoculars. In real, high-

quality binoculars, the optical surfaces of the prisms have antireflective coatings, but carry out your 

calculation for the case where there is no such coating. 

˟̆̋̒̓ τ 

ɿʘʜʘʥʠʝ 

ʅʘʡʜʠʪʝ ʚ ʊʝʢʩʪʝ 1 ʦʪʚʝʪʳ ʥʘ ʩʣʝʜʫʶʱʠʝ ʚʦʧʨʦʩʳ: 

1. What is diffraction?  

2. What are the restrictions, preventing the study of diffraction? 

3. What is the correspondence principle? Who formulated it?  

4. Who was the first to create wave theory of light? 

5. Who proved theoretically that light was an electromagnetic wave?  

Wave Optics 

Electron microscopes can make images of individual atoms, but why will a visible-light microscope 

never be able to? Stereo speakers create the illusion of music that comes from a band arranged in 

your living room, but why doesnôt the stereo illusion work with bass notes? Why are computer chip 

manufacturers investing billions of dollars in equipment to etch chips with x-rays instead of visible 

light? 

This image of the Pleiades star cluster shows 
haloes around the stars due to the wave 
nature of light. 

Ɠ 
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The answers to all of these questions have to do with the subject of wave optics. So far this book has 

discussed the interaction of light waves with matter, and its practical applications to optical devices 

like mirrors, but we have used the ray model of light almost exclusively. Hardly ever have we 

explicitly made use of the fact that light is an electromagnetic wave. We were able to get away with 

the simple ray model because the chunks of matter we were discussing, such as lenses and mirrors, 

were thousands of times larger than a wavelength of light. We now turn to phenomena and devices 

that can only be understood using the wave model of light. 

Diffraction 

Figure a) shows a typical problem in wave optics, enacted with 

water waves. It may seem surprising that we donôt get a simple 

pattern like figure b), but the pattern would only be that simple if 

the wavelength was hundreds of times shorter than the distance 

between the gaps in the barrier and the widths of the gaps. 

Wave optics is a broad subject, but this example will help us to 

pick out a reasonable set of restrictions to make things more 

manageable: 

(1)  We restrict ourselves to cases in which a wave travels 

through a uniform medium, encounters a certain area in which the 

medium has different properties, and then emerges on the other 

side into a second uniform region. 

(2)  We assume that the incoming wave is a nice tidy sine-

wave pattern with wavefronts that are lines (or, in three 

dimensions, planes). 

(3)  In figure a) we can see that the wave pattern immediately 

beyond the barrier is rather complex, but farther on it sorts itself 

out into a set of wedges separated by gaps in which the water is 

still. We will restrict ourselves to studying the simpler wave 

patterns that occur farther away, so that the main question of 

interest is how intense the outgoing wave is at a given angle.  

a) In this view from overhead, a 
straight, sinusoidal water wave 
encounters a barrier with two 
gaps in it. Strong wave vibration 
occurs at angles X and Z, but 
there is none at all at angle Y. 
(The figure has been retouched 
from a real photo of water waves. 
In reality, the waves beyond the 
barrier would be much weaker 
than the ones before it, and they 
would therefore be difficult to 
see.) 

b) This doesn't happen. 

Ɠ 
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The kind of phenomenon described by restriction (1) is called 

diffraction. Diffraction can be defined as the behavior of a wave 

when it encounters an obstacle or non-uniformity in its medium. In 

general, diffraction causes a wave to bend around obstacles and 

make patterns of strong and weak waves radiating out beyond the 

obstacle. Understanding diffraction is the central problem of wave 

optics. If you understand diffraction, even the subset of diffraction 

problems that fall within restrictions (2) and (3), the rest of wave 

optics is icing on the cake. 

Diffraction can be used to find the structure of an unknown 

diffracting object: even if the object is too small to study with 

ordinary imaging, it may be possible to work backward from the 

diffraction pattern to learn about the object. The structure of a 

crystal, for example, can be determined from its x-ray diffraction 

pattern. 

Diffraction can also be a bad thing. In a telescope, for example, light 

waves are diffracted by all the parts of the instrument. This will 

cause the image of a star to appear fuzzy even when the focus has 

been adjusted correctly. By understanding diffraction, one can learn 

how a telescope must be designed in order to reduce this problem ð 

essentially, it should have the biggest possible diameter. 

There are two ways in which restriction (2) might commonly be 

violated. First, the light might be a mixture of wavelengths. If we 

simply want to observe a diffraction pattern or to use diffraction as a 

technique for studying the object doing the diffracting (e.g., if the 

object is too small to see with a microscope), then we can pass the 

light through a colored filter before diffracting it. 

A second issue is that light from sources such as the sun or a 

lightbulb does not consist of a nice neat plane wave, except over 

very small regions of space. Different parts of the wave are out of step with each other, and the wave 

is referred to as incoherent. One way of dealing with this is shown in figure c). 

After filtering to select a certain wavelength of red light, we pass the light through a small pinhole. 

c) A practical, low-tech setup for 

observing diffraction of light. 

d) The bottom figure is simply a 
copy of the middle portion of the 
top one, scaled up by a factor of 
two. All the angles are the 
same. Physically, the angular 
pattern of the diffraction fringes 
can't be any different if we scale 
both ɚ and d by the same factor, 
leaving ɚ/d unchanged. 

2097Ɵ 
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The region of the light that is intercepted by the pinhole is so small that one part of it is not out of 

step with another. Beyond the pinhole, light spreads out in a spherical wave; this is analogous to what 

happens when you speak into one end of a paper towel roll and the sound waves spread out in all 

directions from the other end. By the time the spherical wave gets to the double slit it has spread out 

and reduced its curvature, so that we can now think of it as a simple plane wave. 

If this seems laborious, you may be relieved to know that modern technology gives us an easier way 

to produce a single-wavelength, coherent beam of light: the laser. 

The parts of the final image on the screen in c are called diffraction fringes. The center of each fringe 

is a point of maximum brightness, and halfway between two fringes is a minimum. 

Discussion Question  

A  Why would x-rays rather than visible light be used to find the structure of a crystal? 

Sound waves are used to make images of fetuses in the womb. What would influence the 

choice of wavelength? 

Scaling of Diffraction  

This chapter has ñopticsò in its title, so it is nominally about light, but we started out with an example 

involving water waves. Water waves are certainly easier to visualize, but is this a legitimate 

comparison? In fact the analogy works quite well, despite the fact that a light wave has a wavelength 

about a million times shorter. This is because diffraction effects scale uniformly. That is, if we 

enlarge or reduce the whole diffraction situation by the same factor, including both the wavelengths 

and the sizes of the obstacles the wave encounters, the result is still a valid solution. 

This is unusually simple behavior! Of course water waves and light waves differ in many ways, not 

just in scale, but the general facts you will learn about diffraction are applicable to all waves. Many 

of the important applications are to light waves, and you would probably have found these much 

more difficult without any background in optics. 

Another way of stating the simple scaling behavior of diffraction is that the diffraction angles we get 

depend only on the unitless ratio ɚ/d, where ɚ is the wavelength of the wave and d is some dimension 

of the diffracting objects, e.g., the center-to-center spacing between the slits in figure a). If, for 

instance, we scale up both ɚ and d by a factor of 37, the ratio ɚ/d will be unchanged. 

2049ƙ 
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The Correspondence Principle 

The only reason we donôt usually notice diffraction of light in everyday life is that we donôt normally 

deal with objects that are comparable in size to a wavelength of visible light, which is about a 

millionth of a meter. Does this mean that wave optics contradicts ray optics, or that wave optics 

sometimes gives wrong results? No. If you hold three fingers out in the sunlight and cast a shadow 

with them, either wave optics or ray optics can be used to predict the straightforward result: a shadow 

pattern with two bright lines where the light has gone through the gaps between your fingers. Wave 

optics is a more general theory than ray optics, so in any case where ray optics is valid, the two 

theories will agree. This is an example of a general idea enunciated by the physicist Niels Bohr, 

called the correspondence principle: when flaws in a physical theory lead to the creation of a new 

and more general theory, the new theory must still agree with the old theory within its more restricted 

area of applicability. After all, a theory is only created as a way of 

describing experimental observations. If the original theory had not 

worked in any cases at all, it would never have become accepted. 

In the case of optics, the correspondence principle tells us that when 

ɚ/d is small, both the ray and the wave model of light must give 

approximately the same result. Suppose you spread your fingers and 

cast a shadow with them using a coherent light source. The quantity 

ɚ/d is about 10
-4

, so the two models will agree very closely. (To be 

specific, the shadows of your fingers will be outlined by a series of 

light and dark fringes, but the angle subtended by a fringe will be on 

the order of 10
-4

 radians, so they will be invisible and washed out by 

the natural fuzziness of the edges of sun-shadows, caused by the 

finite size of the sun.) 

self-check A 

What kind of wavelength would an electromagnetic wave have to have in order to diffract 

dramatically around your body? Does this contradict the correspondence principle? 

e) Christiaan Huygens (1629 
- 1695). 

Ɠ 
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Huygens' Principle  

Returning to the example of double-slit diffraction, f), note the 

strong visual impression of two overlapping sets of concentric 

semicircles. This is an example of Huygensô Principle, named after 

a Dutch physicist and astronomer. (The first syllable rhymes with 

ñboy.ò) Huygensô principle states that any wavefront can be broken 

down into many small side-by-side wave peaks, g), which then 

spread out as circular ripples, h), and by the principle of 

superposition, the result of adding up these sets of ripples must give 

the same result as allowing the wave to propagate forward, i). In the 

case of sound or light waves, which propagate in three dimensions, 

the ñripplesò are actually spherical rather than circular, but we can 

often imagine things in two dimensions for simplicity. 

In double-slit diffraction the application of Huygensô Principle is 

visually convincing: it is as though all the sets of ripples have been 

blocked except for two. It is a rather surprising mathematical fact, 

however, that Huygensô Principle gives the right result in the case of 

an unobstructed linear wave, h) and i). A theoretically infinite 

number of circular wave patterns somehow conform to add together 

and produce the simple linear wave motion with which we are 

familiar. 

Since Huygensô Principle is equivalent to the principle of 

superposition, and superposition is a property of waves, what 

Huygens had created was essentially the first wave theory of light. 

However, he imagined light as a series of pulses, like hand claps, rather than as a sinusoidal wave. 

The history is interesting. Isaac Newton loved the atomic theory of matter so much that he searched 

enthusiastically for evidence that light was also made of tiny particles. The paths of his light particles 

would correspond to rays in our description; the only significant difference between a ray model and 

a particle model of light would occur if one could isolate individual particles and show that light had 

ñgraininessò to it. Newton never did this, so although he thought of his model as a particle model, it 

is more accurate to say he was one of the builders of the ray model. 

Almost all that was known about reflection and refraction of light could be interpreted equally well in 

i) Adding up the ripples 
produces a new wavefront 

h / If it was by itself, each of the 
parts would spread out as a 
circular ripple. 

g) A wavefront can be analyzed 
by the principle of 
superposition, breaking it down 
into many small parts. 

f) Double-slit diffraction. 
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terms of a particle model or a wave model, but Newton had one reason for strongly opposing 

Huygensô wave theory. Newton knew that waves exhibited diffraction, but diffraction of light is 

difficult to observe, so Newton believed that light did not exhibit diffraction, and therefore must not 

be a wave. Although Newtonôs criticisms were fair enough, the debate also took on the overtones of a 

nationalistic dispute between England and continental Europe, fueled by English resentment over 

Leibnizôs supposed plagiarism of Newtonôs calculus. Newton wrote a book on optics, and his 

prestige and political prominence tended to discourage questioning 

of his model. 

Thomas Young (1773-1829) was the person who finally, a hundred 

years later, did a careful search for wave interference effects with 

light and analyzed the results correctly. He observed double-slit 

diffraction of light as well as a variety of other diffraction effects, 

all of which showed that light exhibited wave interference effects, 

and that the wavelengths of visible light waves were extremely 

short. The crowning achievement was the demonstration by the 

experimentalist Heinrich Hertz and the theorist James Clerk 

Maxwell that light was an electromagnetic wave. Maxwell is said to 

have related his discovery to his wife one starry evening and told 

her that she was the only person in the world who knew what 

starlight was. 

Double-Slit Diffraction 

Letôs now analyze double-slit diffraction, k, using Huygensô 

principle. The most interesting question is how to compute the 

angles such as X and Z where the wave intensity is at a maximum, 

and the in-between angles like Y where it is minimized. Letôs 

measure all our angles with respect to the vertical center line of the 

figure, which was the original direction of propagation of the wave. 

If we assume that the width of the slits is small (on the order of the 

wavelength of the wave or less), then we can imagine only a single 

set of Huygens ripples spreading out from each one, l. White lines 

represent peaks, black ones troughs. The only dimension of the 
m) Constructive interference 
along the center-line. 

l) Use of Huygens óPrinciple. 

k) Double-slit diffraction. 

j) Thomas Young 
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diffracting slits that has any effect on the geometric pattern of the 

overlapping ripples is then the center-to-center distance, d, between 

the slits. 

We know from our discussion of the scaling of diffraction that there 

must be some equation that relates an angle like Z᷊ to the ratio ɚ/d, 

ɚ/d ź ẓ 

If the equation for ᷊ Z depended on some other expression such as ɚ + 

d or ɚ
2
/d, then it would change when we scaled A and d by the same 

factor, which would violate what we know about the scaling of 

diffraction. 

Along the central maximum line, X, we always have positive waves 

coinciding with positive ones and negative waves coinciding with 

negative ones. (I have arbitrarily chosen to take a snapshot of the 

pattern at a moment when the waves emerging from the slit are 

experiencing a positive peak.) The superposition of the two sets of 

ripples therefore results in a doubling of the wave amplitude along 

this line. There is constructive interference. This is easy to explain, 

because by symmetry, each wave has had to travel an equal number 

of wavelengths to get from its slit to the center line, m: Because both 

sets of ripples have ten wavelengths to cover in order to reach the 

point along direction X, they will be in step when they get there. 

At the point along direction Y shown in the same figure, one wave 

has traveled ten wavelengths, and is therefore at a positive extreme, 

but the other has traveled only nine and a half wavelengths, so it at a 

negative extreme. There is perfect cancellation, so points along this 

line experience no wave motion. 

But the distance traveled does not have to be equal in order to get 

constructive interference. At the point along direction Z, one wave has gone nine wavelengths and 

the other ten. They are both at a positive extreme. 

self-check B 

At a point half a wavelength below the point marked along direction X, carry out a similar 

n) The waves travel distances 
L1 and L2 from the two slits to 
get to the same point in space, 
at an angle 0 from the center 
line. 

o) A close-up view of figure n, 
showing how the path length 
difference L ð L' is related to d 
and to the angle ɗ 
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analysis. 

To summarize, we will have perfect constructive interference at any point where the distance to one 

slit differs from the distance to the other slit by an integer number of wavelengths. Perfect destructive 

interference will occur when the number of wavelengths of path length difference equals an integer 

plus a half. 

Now we are ready to find the equation that predicts the angles of the 

maxima and minima. The waves travel different distances to get to 

the same point in space, n. We need to find whether the waves are in 

phase (in step) or out of phase at this point in order to predict 

whether there will be constructive interference, destructive 

interference, or something in between. 

One of our basic assumptions in this chapter is that we will only be 

dealing with the diffracted wave in regions very far away from the 

object that diffracts it, so the triangle is long and skinny. Most real-

world examples with diffraction of light, in fact, would have 

triangles with even skinner proportions than this one. The two long 

sides are therefore very nearly parallel, and we are justified in 

drawing the right triangle shown in figure o, labeling one leg of the 

right triangle as the difference in path length , L ð L', and labeling 

the acute angle as ᷊. (In reality this angle is a tiny bit greater than the 

one labeled ᷊  in figure n.) 

The difference in path length is related to d and  ᷊by the equation 

 siṇ  

Constructive interference will result in a maximum at angles for which L ð L' is an integer number 

of wavelengths, 

L ð L' = mɚ 
[condition for a maximum; 

m is an integer] 

Here m equals 0 for the central maximum, -1 for the first maximum to its left, +2 for the second 

maximum on the right, etc. Putting all the ingredients together, we find mɚ/d = sin ,᷊ or 

 = 
 

 
[condition for a maximum; 

m is an integer] 

q) Double-slit diffraction 
patterns of long-wavelength red 
light (top) and short-wavelength 
blue light (bottom). 

p) Cutting d in half doubles the 
angles of the diffraction fringes. 
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Similarly, the condition for a minimum is 

 =  
[condition for a minimum; 

m is an integer plus İ] 

That is, the minima are about halfway between the maxima. 

As expected based on scaling, this equation relates angles to the unitless ratio ɚ/d. Alternatively, we 

could say that we have proven the scaling property in the special case of double-slit diffraction. It 

was inevitable that the result would have these scaling properties, since the whole proof was 

geometric, and would have been equally valid when enlarged or reduced on a photocopying machine! 

Counterintuitively, this means that a diffracting object with smaller dimensions produces a bigger 

diffraction pattern, p). 

Double-slit diffraction of blue and red light example 1 

Blue light has a shorter wavelength than red. For a given double-slit spacing d, the smaller 

value of ɚ/d for leads to smaller values of sin ,̣ and therefore to a more closely spaced set 

of diffraction fringes, (g) 

The correspondence principle example 2 

Let's also consider how the equations for double-slit diffraction relate to the correspondence 

principle. When the ratio ɚ/d is very small, we should recover the case of simple ray optics. 

Now, if ɚ/d is small, sin ɗ must be small as well, and the spacing between the diffraction 

fringes will be small as well. Although we have not proven it, the central fringe is always the 

brightest, and the fringes get dimmer and dimmer as we go farther from it. For small values 

of ɚ/d, the part of the diffraction pattern that is bright enough to be detectable covers only a 

small range of angles. This is exactly what we would expect from ray optics: the rays 

passing through the two slits would remain parallel, and would continue moving in the 0 = 0 

direction. (In fact there would be images of the two separate slits on the screen, but our 

analysis was all in terms of angles, so we should not expect it to address the issue of 

whether there is structure within a set of rays that are all traveling in the  ̣= 0 direction.) 

Spacing of the fringes at small angles Example 3 

At small angles, we can use the approximation sin ɗ å 0, which is valid if ɗ is measured in 

radians. The equation for double-slit diffraction becomes simply 

 =  , 

which can be solved for ɗ to give 

2491ƙ 
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ɗ =  

The difference in angle between successive fringes is the change in 0 that results from 

changing m by plus or minus one, 

æɗ =  

For example, if we write 07 for the angle of the seventh bright fringe on one side of the 

central maximum and 08 for the neighboring one, we have 

ɗ8 ï ɗ7 =  -  

=   

and similarly for any other neighboring pair of fringes. 

Although the equation ɚ/d = sin᷊ /m is only valid for a double slit, it is can still be a guide to our 

thinking even if we are observing diffraction of light by a virus or a fleaôs leg: it is always true that 

(1)  large values of ɚ/d lead to a broad diffraction pattern, and 

(2)  diffraction patterns are repetitive. 

In many cases the equation looks just like ɚ/d = siṇ /m but with an extra numerical factor thrown in, 

and with d interpreted as some other dimension of the object, e.g., the diameter of a piece of wire. 

˟̆̋̒̓ υ 

ɿʘʜʘʥʠʝ 

ʅʘʡʜʠʪʝ ʚ ʊʝʢʩʪʝ 1 ʦʪʚʝʪʳ ʥʘ ʩʣʝʜʫʶʱʠʝ ʚʦʧʨʦʩʳ: 

1. Will there be diffraction patterns, if a single slit is wider than the wavelength of light? 

2. What scientific example of single slit diffraction can be shown by optical telescopes? 

3. How can we justify the principle of least time based on the wave model of light? 

Repetition 
 

Suppose we replace a double slit with a triple slit, r). We can think 

of this as a third repetition of the structures that were present in the 

double slit. Will this device be an improvement over the double slit 

for any practical reasons? 

r) A triple slit. 

Ɠ 
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The answer is yes, as can be shown using figure s). For ease of visualization, I have violated our 

usual rule of only considering points very far from the diffracting object. The scale of the drawing is 

such that a wavelengths is one cm. In s)1, all three waves travel an integer number of wavelengths to 

reach the same point, so there is a bright central spot, as we would expect from our experience with 

the double slit. In figure s)2, we show the path lengths to a new point. This point is farther from slit 

A by a quarter of a wavelength, and correspondingly closer to slit C. The distance from slit B has 

hardly changed at all. Because the paths lengths traveled from slits A and C differ from half a 

wavelength, there will be perfect destructive interference between these two waves. There is still 

some uncanceled wave intensity because of slit B, but the amplitude will be three times less than in 

figure s)1, resulting in a factor of 9 decrease in brightness. Thus, by moving off to the right a little, 

we have gone from the bright central maximum to a point that is quite dark. 

Now let's compare with what would have happened if slit C had been covered, creating a plain old 

double slit. The waves coming from slits A and B would have been out of phase by 0.23 

wavelengths, but this would not have caused very severe interference. The point in figure s)2 would 

have been quite brightly lit up. 

To summarize, we have found that adding a third slit narrows down 

the central fringe dramatically. The same is true for all the other 

fringes as well, and since the same amount of energy is concentrated 

in narrower diffraction fringes, each fringe is brighter and easier to 

see, t).  

This is an example of a more general fact about diffraction: if some 

feature of the diffracting object is repeated, the locations of the 

maxima and minima are unchanged, but they become narrower. 

t) A double-slit diffraction 

pattern (top), and a pattern 

made by five slits (bottom) 

s) 1. There is a bright central maximum. 2. At this point just off the central maximum, the path lengths traveled 
by the three waves have changed. 



37 

 

Taking this reasoning to its logical conclusion, a diffracting object with thousands of slits would 

produce extremely narrow fringes. Such an object is called a diffraction grating. 

Single-Slit Diffraction 

If we use only a single slit, is there diffraction? If the slit is not wide 

compared to a wavelength of light, then we can approximate its 

behavior by using only a single set of Huygens ripples. There are no 

other sets of ripples to add to it, so there are no constructive or 

destructive interference effects, and no maxima or minima. The 

result will be a uniform spherical wave of light spreading out in all 

directions, like what we would expect from a tiny lightbulb. We 

could call this a diffraction pattern, but it is a completely featureless 

one, and it could not be used, for instance, to determine the 

wavelength of the light, as other diffraction patterns could. 

All of this, however, assumes that the slit is narrow, compared to a 

wavelength of light. If, on the other hand, the slit is broader, there 

will indeed be interference among the sets of ripples spreading out 

from various points along the opening. Figure u) shows an example 

with water waves, and figure v) with light. 

self-check C 

How does the wavelength of the waves compare with the 

width of the slit in figure u? 

We will not go into the details of the analysis of single-slit diffraction, but let us see how its 

properties can be related to the general things weôve learned about diffraction. We know based on 

scaling arguments that the angular sizes of features in the diffraction pattern must be related to the 

wavelength and the width, a, of the slit by some relationship of the form 

 ź ̣ 

This is indeed true, and for instance the angle between the maximum of the central fringe and the 

maximum of the next fringe on one side equals 1.5ɚ/a. Scaling arguments will never produce factors 

such as the 1.5, but they tell us that the answer must involve ɚ/a, so all the familiar qualitative facts 

are true. For instance, shorter-wavelength light will produce a more closely spaced diffraction 

u) Single-slit diffraction of water 
waves. 

v) Single-slit diffraction of red 
light. Note the double width of 
the central maximum. 

w) A pretty good simulation of 
the single-slit pattern of figure 
u, made by using three motors 
to produce overlapping ripples 
from three neighboring points in 
the water. 
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pattern. 

An important scientific example of single-slit diffraction is in telescopes. 

Images of individual stars, as in figure x), are a good way to 

examine diffraction effects, because all stars except the sun are so 

far away that no telescope, even at the highest magnification, can 

image their disks or surface features. Thus any features of a starôs 

image must be due purely to optical effects such as diffraction. A 

prominent cross appears around the brightest star and dimmer ones 

surround the dimmer stars. Something like this is seen in most 

telescope photos, and indicates that inside the tube of the telescope 

there were two perpendicular struts or supports. Light diffracted 

around these struts. You might think that diffraction could be 

eliminated entirely by getting rid of all obstructions in the tube, but 

the circles around the stars are diffraction effects arising from 

single-slit diffraction at the mouth of the telescopeôs tube! (Actually 

we have not even talked about diffraction through a circular 

opening, but the idea is the same.) Since the angular sizes of the 

diffracted images depend on ɚ/a, the only way to improve the 

resolution of the images is to increase the diameter, a, of the tube. 

This is one of the main reasons (in addition to light-gathering power) why the best telescopes must be 

very large in diameter. 

Double-slit diffraction is easier to understand conceptually than single-slit diffraction, but if you do a 

double-slit diffraction experiment in real life, you are likely to encounter a complicated pattern like 

figure z)1, rather than the simpler one, z)2, you were expecting. This is because the slits are fairly 

big compared to the wavelength of the light being used. We really have two different distances in our 

pair of slits: d, the distance between the slits, and w, the width of each slit. Remember that smaller 

distances on the object the light diffracts around correspond to larger features of the diffraction 

pattern. The pattern 1 thus has two spacings in it: a short spacing corresponding to the large distance 

d, and a long spacing that relates to the small dimension w. 

self-check D 

What would this imply about radio telescopes as compared with visible- light telescopes? 

y) A radio telescope. 

x) An image of the Pleiades star 
cluster. The circular rings 
around the bright stars are due 
to single-slit diffraction at the 
mouth of the telescope's tube. 
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